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Abstract 
This paper presents, an Adaptive Cat Swarm Optimization (ACSO) for solving reactive power 

dispatch problem. Cat Swarm Optimization (CSO) is one of the new-fangled swarm intelligence algorithms 
for finding the most excellent global solution. Because of complication, sometimes conventional CSO takes 
a lengthy time to converge and cannot attain the precise solution. For solving reactive power dispatch 
problem and to improve the convergence accuracy level, we propose a new adaptive CSO namely 
‘Adaptive Cat Swarm Optimization’ (ACSO). First, we take account of a new-fangled adaptive inertia 
weight to velocity equation and then employ an adaptive acceleration coefficient. Second, by utilizing the 
information of two previous or next dimensions and applying a new-fangled factor, we attain to a new 
position update equation composing the average of position and velocity information. TheprojectedACSO 
has been tested on standard IEEE 57 bus test system and simulation results shows clearly about the high-
quality performance of the plannedalgorithm in tumbling the real power loss. 
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1. Introduction 

Optimal reactive power dispatch (ORPD) problem is multi-objective optimization 
problems that reduce the real power loss. Various mathematical techniqueslike the gradient 
method [1-2], Newton method [3] and linear programming [4-7] have been adopted to solve the 
optimal reactive power dispatch problem. Both  the gradient and Newton methods has the 
difficulty in managing inequality constraints. If linear programming is applied then the input- 
output function has to be articulated as a set of linear functions which mostly lead to loss of 
accurateness.  The problem of voltage stability and collapse play a   major role in power system 
planning and operation [8].  Global optimization has received widespread research awareness, 
and a great number of methods have been applied to solve this problem. Evolutionary 
algorithms such as genetic algorithm have been already proposed to solve the reactive power 
flow problem [9,10]. Evolutionary algorithm is a heuristic approach used for minimization 
problems by utilizing nonlinear and non-differentiable continuous space functions. In [11], 
Genetic algorithm has been used to solve optimal reactive power flow problem. In [12], Hybrid 
differential evolution algorithm is proposed to improve the voltage stability index. In [13] 
Biogeography Based algorithm is projected to solve the reactive power dispatch problem. In 
[14], afuzzy based method is used to solve the optimal reactive power scheduling method .In 
[15], an improved evolutionary programming is used to solvethe optimal reactive power dispatch 
problem. In [16], the optimal reactive power flow problem is solved by integrating a genetic 
algorithm with a nonlinearinterior point method. In [17], apattern algorithm is used to solve ac-dc 
optimal reactive powerflow model with the generator capability limits. In [18], proposes a two-
step approach to evaluate Reactive power reserves with respect to operating constraints and 
voltage stability. In [19], a programming based proposed approach used to solve the optimal 
reactive power dispatch problem. In [20], presents aprobabilistic algorithm for optimal reactive 
power provisionin hybrid electricity markets with uncertain loads. Cat Swarm Optimization 
(CSO) which mimics the behaviour of cats [21]. By imitate the behaviour of cats and modelling 
into two modes, CSO can decipher the optimization problems. So in this paper, we plan an 
Adaptive CSO in order to attain the elevated convergence accuracy in a lesser amount of 
iteration. First we employ an adaptive inertia weight and adaptive acceleration coefficient. So, 
the new velocity update equation will be calculated in an adaptive formula. Then, our aim is to 
consider the effect of previous or next steps in order to compute the current position. So by 
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utilizing a factor namely ‘Forgetting Factor’, information values of steps will be dissimilar. Finally, 
we use an average form of position update equation composing new velocity and position 
information. The proposed algorithm ACSO been evaluated in standard IEEE 57 bus test 
system & the simulation results shows that our proposed approach outperforms all reported 
algorithms in minimization of  real power loss. 
 
 
2. Problem Formulation  

The OPF problem is measured as a general minimization problem with constraints, and 
can be mathematically written in the following form: 
 

Minimize f(x, u) (1)  
 

Subject to g(x,u)=0 (2) 
 

and 
 

hሺx, uሻ ൑ 0 (3) 
 
Where f(x,u) is the objective function. g(x.u) and h(x,u) are respectively the set of equality and 
inequality constraints. x is the vector of state variables, and u is the vector of control variables. 

The state variables are the load buses (PQ buses) voltages, angles, the generator 
reactive powers and the slack active generator power: 
 

x ൌ ൫P୥ଵ, θଶ, . . , θ୒, V୐ଵ, . , V୐୒୐, Q୥ଵ, . . , Q୥୬୥൯
୘
 (4) 

 
The control variables are the generator bus voltages, the shunt capacitors/reactors and 

the transformers tap-settings: 
 

u ൌ ൫V୥, T, Qୡ൯
୘
 (5) 

 
or 
 

u ൌ ൫V୥ଵ, … , V୥୬୥, Tଵ, . . , T୒୲, Qୡଵ, . . , Qୡ୒ୡ൯
୘
 (6) 

 
Where Ng, Nt and Nc are the number of generators, number of tap transformers and the 
number of shunt compensators respectively. 
 
 
3. Objective Function 
 
Active power loss 

The objective of the reactive power dispatch is to minimize the active power loss in the 
transmission network, which can be described as follows: 
 

F ൌ PL ൌ ∑ g୩୩∈୒ୠ୰ ൫V୧
ଶ ൅ V୨

ଶ െ 2V୧V୨cosθ୧୨൯ (7) 
 
or 
 

F ൌ PL ൌ ∑ P୥୧ െ Pୢ ൌ P୥ୱ୪ୟୡ୩ ൅ ∑ P୥୧ െ Pୢ
୒୥
୧ஷୱ୪ୟୡ୩୧∈୒୥  (8) 

 
 
Where gk : is the conductance of branch between nodes i and j, Nbr: is the total number of 
transmission lines in power systems. Pd: is the total active power demand, Pgi: is the generator 
active power of unit i, and Pgsalck: is the generator active power of slack bus. 
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Voltage profile improvement 
For minimizing the voltage deviation in PQ buses, the objective function becomes: 

 
F ൌ PL ൅ ω୴ ൈ VD (9) 
 

Where ωv: is a weighting factor of voltage deviation. 
VD is the voltage deviation given by: 
 

VD ൌ ∑ |V୧ െ 1|
୒୮୯
୧ୀଵ  (10) 

 
Equality Constraint  

The equality constraint g(x,u) of the ORPD problem is represented by the power 
balance equation, where the total power generation must cover the total power demand and the 
power losses: 
 

Pୋ ൌ Pୈ ൅ P୐ (11) 
 

This equation is solved by running Newton Raphson load flow method, by calculating 
the active power of slack bus to determine active power loss. 

 
Inequality Constraints  

The inequality constraints h(x,u) reflect the limits on components in the power system 
as well as the limits created to ensure system security. Upper and lower bounds on the active 
power of slack bus, and reactive power of generators: 

 
P୥ୱ୪ୟୡ୩
୫୧୬ ൑ P୥ୱ୪ୟୡ୩ ൑ P୥ୱ୪ୟୡ୩

୫ୟ୶  (12) 
 
Q୥୧
୫୧୬ ൑ Q୥୧ ൑ Q୥୧

୫ୟ୶ , i ∈ N୥ (13) 
 
Upper and lower bounds on the bus voltage magnitudes:          
 

V୧
୫୧୬ ൑ V୧ ൑ V୧

୫ୟ୶ , i ∈ N (14) 
 
Upper and lower bounds on the transformers tap ratios: 
 

T୧
୫୧୬ ൑ T୧ ൑ T୧

୫ୟ୶ , i ∈ N୘ (15) 
 
Upper and lower bounds on the compensators reactive powers: 
 

Qୡ
୫୧୬ ൑ Qୡ ൑ Qେ

୫ୟ୶ , i ∈ Nେ (16) 
 
Where N is the total number of buses, NT is the total number of Transformers; Nc is the total 
number of shunt reactive compensators. 
 
 
4. Cat Swarm Optimization 

Cat Swarm Optimization is a new-fangled optimization algorithm in the field of swarm 
intelligence. The CSO algorithm replica the behaviour of cats into two modes: ‘Search mode’ 
and ‘Trace mode’. Swarm is made of primary population composed of particles to explore in the 
solution space. Here in CSO, we employ cats as particles for solving the problem.  In CSO, 
each cat has its own location composed of D dimensions, velocities for every dimension, a 
fitness value, which represents the accommodation of the cat to the fitness function, and a flag 
to identify whether the cat is in search mode or trace mode. The final solution would be the most 
excellent position of one of the cats. The CSO keeps the best solution until it reaches the end of 
the iterations [22]. 
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Search mode  
For modelling the behaviour of cats in resting time and being-alert, we use the search 

mode. In this mode is a time for opinion and deciding about next move. This mode has four 
main parameters which are mentioned as follow: search memory pools (SMP), search range of 
the selected dimension (SRD), calculate of dimension to change (CDC) and self-position 
consideration (SPC). 
The process of search mode is describes as follow: 
Step 1: create j copies of the present location of catk, where j = SMP. If the value of SPC is true, 
let j = (SMP-1), then preserve the present location as one of the candidates.  
Step 2: For every copy, according to CDC, arbitrarily Add or Subtract SRD percent the present 
values and reinstate the old ones.  
Step 3: compute the fitness values (FS) of all candidate points.  
Step 4: If all FS are not exactly equal, compute the selecting probability of every candidate point 
by (1), or else set all the selecting probability of every candidate point is 1.  
Step 5: arbitrarily choose the point to move to from the candidate points, and replace the 
location of catk. 
 

P୧ ൌ
|ୗୗ୉౟ିୗୗ୉ౣ౗౮|

ୗୗ୉ౣ౗౮ିୗୗ୉ౣ౟౤
 (17) 

 
If the objective of the fitness function is to discover the minimum solution, FSb = FSmax, 
otherwise FSb = FSmin 
 
Trace Mode  

Trace mode is the second mode of algorithm. In this mode, cats craving to trace targets 
and foods. The procedure of trace mode can be described as follow:  
Step 1: renew the velocities for each dimension according to (18).  
Step 2: verify if the velocities are in the range of maximum velocity. In case the new velocity is 
over-range, it is set equal to the limit. 
 

V୩,ୢ ൌ V୩,ୢ ൅ rଵcଵ൫Xୠୣୱ୲,ୢ െ X୩,ୢ൯ (18) 
 
Step 3: renew the location of catk according to equation (19) 
 

X୩,ୢ ൌ X୩,ୢ ൅ V୩,ୢ (19) 
 

Xbest,d is the position of the cat, who has the best fitness value, Xk,d is the position of 
catk, c1 is an acceleration coefficient for extending the velocity of the cat to move in the solution 
space and usually is equal to 2.03 and r1 is a random value uniformly generated in the range of 
[0,1]. 
 
Key explanation of CSO 

In order to merge the two modes into the algorithm, we define a mixture ratio (MR) 
which specifies the rate of mixing of search mode and trace mode. This parameter makes a 
decision how many cats will be moved into search mode procedure.First of all, we generate N 
cats and initialize the positions, velocities and the flags for cats. (*) According to the fitness 
function, calculate the fitness value of the each cat and keep the best cat into memory (Xbest). In 
next step, according to cat’s flag, apply cat to the search mode or trace mode procedure. After 
finishing the associated progression, re-pick the number of cats and set them into search mode 
or trace mode according to MR parameter. At the end, check the termination condition, if 
satisfied, stop the program, and otherwise go to (*) [23]. 

 
 

5. Adaptive Cat Swarm Optimization 
The trace mode of CSO has two equations: velocity update equation and position 

update equation. For attainment an adaptive CSO, we modify some of the parameters in 
velocity equation. Also to calculate the current location of cats, we deem the information of 
previous and next dimensions by using an extraordinary factor and then we attain a fresh 
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dynamic position update equation. We explain the proposed algorithm in two parts. 
 
By means of Adaptive Parameters 

In the proposed algorithm, we insert an adaptive inertia weight to the velocity equation 
which is updated in every dimension. By utilizing this parameter, we create equilibrium between 
global and local search ability. A large inertia weight make easy of a global search while a small 
inertia weigh make easy of a local search. First we employ a large value and it will be reduced 
gradually to the least value by using (20). 
 

Wሺiሻ ൌ Wୱ ൅
୧ౣ౗౮ି୧

ଶൈ୧ౣ౗౮
 (20) 

 
Equation (20) specifies that the inertia weight will be renewed adaptively, where Ws is 

the starting weight, imax is the maximum dimension of benchmark and i is the existing dimension. 
So the maximum inertia weight happens in the primary dimension of the each iteration and it will 
be updated decreasingly in each dimension. In the projected algorithm Ws is equal to 0.5. Also, 
c1 is an acceleration coefficient for extending the velocity of the cat to shift in the solution space. 
This parameter is a constant value and is usually equal to 2.03, but we use an adaptive formula 
to update it by (21). 
 

Cሺiሻ ൌ Cୱ ൅
୧ౣ౗౮ି୧

ଶൈ୧ౣ౗౮
 (21) 

 
Equation (21) reveals that the adaptive acceleration coefficient will be steadily 

increased in each dimension and the greatest value happens in the last dimension. Here Cs is 
equal to 2.03.  

By using these two adaptive parameters, we modify the velocity update equation for 
each cat to a new form describing in (22). 
 

V୩,ୢ ൌ Wሺdሻ ൈ V୩,ୢ ൅ rଵ ൈ Cሺdሻ ൈ ൫Xୠୣୱ୲,ୢ െ X୩,ୢ൯ (22) 
 
Fresh Dynamic location Update Equation 

In this part, we modify the location update equation to a new form. In the conventional 
CSO, the position of cat is including of current information of velocity and position. Occasionally 
in many cases, using of previous information in order to guess the current position is useful. 
Also, taking the advantages of next information can be suitable information for renewing the 
cat’s position. So we use the two previous or next dimensions information of velocity and 
position by applying a fresh factor which is called ‘Forgetting factor’. By this factor, the values of 
previous and next steps will be different. So the information value for first previous or next step 
is senior than second previous or next step. It means that the pressure of previous or next step 
is more significant than previous or next second step. New-fangled position update equation is 
described by (23). In the projected algorithm, γ is the forgetting factor and is equal to 0.8 (It is 
necessary to use γ > 0.5). This fresh position update equation is composing two new vibrant 
terms, average location information and average velocity information. Here, we employ the 
current and the average information of first and second previous or next dimensions for both 
velocity and position by applying a forgetting factor (γ).  
 

X୩,ୢ ൌ
1

2
ሾlocation inofrmation ൅ velocity informationሿ 

location information ൌ X୩,ୢ ൅
൫γ ൈ X୩,ୢାଵ൯ ൅ ሺ1 െ γሻ ൈ ൫X୏,ୢାଶ൯

2
 ൅

൫γ ൈ X୩,ୢିଵ൯ ൅ ሺ1 െ γሻ ൈ ൫X୏,ୢିଶ൯

2
 

velocity information ൌ V୩,ୢ ൅
൫ஓൈ୚ౡ,ౚశభ൯ାሺଵିஓሻൈ൫୚ే,ౚశమ൯

ଶ
 ൅

൫ஓൈ୚ౡ,ౚషభ൯ାሺଵିஓሻൈ൫୚ే,ౚషమ൯

ଶ
 (23) 

 
 
6. Simulation Results  

The proposed ACSO algorithm for solving ORPD problem is tested for standard IEEE-
57 bus power system.  The IEEE 57-bus system data consists of 80 branches, seven generator-
buses and 17 branches under load tap setting transformer branches. The possible reactive 
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power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 and 12 are PV buses and bus 1 
is selected as slack-bus. In this case, the search space has 27 dimensions, i.e., the seven 
generator voltages, 17 transformer taps, and three capacitor banks. The system variable limits 
are given in Table 1. The initial conditions for the IEEE-57 bus power system are given as 
follows: 
Pload = 12.221 p.u. Qload = 3.251 p.u. 
The total initial generations and power losses are obtained as follows: 
∑Pୋ = 12.6259 p.u. ∑Qୋ = 3.3369 p.u. 
Ploss = 0.26493 p.u. Qloss = -1.2209 p.u. 

Table 2 shows the various system control variables i.e. generator bus voltages, shunt 
capacitances and transformer tap settings obtained after ACSO based optimization which are 
within their acceptable limits. In Table 3, a comparison of optimum results obtained from 
proposed ACSO with other optimization techniques for ORPD mentioned in literature for IEEE-
57 bus power system is given. These results indicate the robustness of proposed ACSO 
approach for providing better optimal solution in case of IEEE-57 bus system. 
 
 

Table 1. Variables limits for ieee-57 bus power system (p.u.) 
reactive power generation limits

bus no  1 2 3 6 8 9 12 
Qgmin -1.2 -.013 -.03 -0.06 -1.2 -0.02 -0.3 
qgmax 2 0.6 0.5 0.23 2 0.03 1.43 

voltage and tap setting limits
vgmin vgmax vpqmin vpqmax tkmin tkmax 
0.8 1.0 0.93 1.06 0.6 1.2 

shunt capacitor limits
bus no 18 25 53 

qcmin 0 0 0 
qcmax 10 5.3 6.2 

 
 

Table 2. Control variables obtained after optimization by ACSO method for 
ieee-57 bus system (p.u.) 

Control 
Variables  

ACSO 
 

V1 1.1 
V2 1.078 
V3 1.064 
V6 1.057 
V8 1.078 
V9 1.044 

V12 1.058 
Qc18 0.0835 
Qc25 0.326 
Qc53 0.0615 
T4-18 1.017 

T21-20 1.068 
T24-25 0.968 
T24-26 0.936 
T7-29 1.095 

T34-32 0.948 
T11-41 1.016 
T15-45 1.068 
T14-46 0.936 
T10-51 1.044 
T13-49 1.065 
T11-43 0.913 
T40-56 0.906 
T39-57 0.968 
T9-55 0.988 
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Table 3. comparative optimization results for ieee-57 bus power system (p.u.) 
S.No. Optimization 

Algorithm 
Best 

Solution 
Worst Solution Average 

Solution 
1 NLP [24] 0.25902 0.30854 0.27858 
2 CGA [24] 0.25244 0.27507 0.26293 
3 AGA [24] 0.24564 0.26671 0.25127 
4 PSO-w [24] 0.24270 0.26152 0.24725 
5 PSO-cf [24] 0.24280 0.26032 0.24698 
6 CLPSO [24] 0.24515 0.24780 0.24673 
7 SPSO-07 [24] 0.24430 0.25457 0.24752 
8 L-DE [24] 0.27812 0.41909 0.33177 
9 L-SACP-DE [24] 0.27915 0.36978 0.31032 

10 L-SaDE [24] 0.24267 0.24391 0.24311 
11 SOA [24] 0.24265 0.24280 0.24270 
12 LM [25] 0.2484 0.2922 0.2641 
13 MBEP1 [25] 0.2474 0.2848 0.2643 
14 MBEP2 [25] 0.2482 0.283 0.2592 
15 BES100 [25] 0.2438 0.263 0.2541 
16 BES200 [25] 0.3417 0.2486 0.2443 
17 Proposed ACSO 0.22321 0.23984 0.23199 

 
 
7. Conclusion  

In this paper, the ACSO has been productively implemented to solve ORPD problem. 
The main advantages of the ACSO to the ORPD problem are optimization of different type of 
objective function, real coded of both continuous and discrete control variables, and easily 
handling nonlinear constraints. The proposed algorithm has been tested on the IEEE 57-bus 
system.The active power loss has been minimized andthe voltage profile indexes are within the 
limits.  
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